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On the mathematics of fluidization 
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The momentum and mass conservation equations derived in part 1 are used in 
the limiting case of large solids-to-fluid density ratio. Bubbles generally appear 
in such fluidized beds and solutions are obtained which describe the motion of 
the particulate and fluid phases in the presence of a fully developed bubble. 
The analytical solutions are shown to be in fair agreement with experiment. 

1. Introduction 
The notation used in this paper, part 2 ,  is the same as that used and defined 

by Murray (1965) in part 1. Part 1 will be referred to as I below. A short list of 
symbols defined in I and used below is given a t  the end of this section. 

In  I basic general equations governing the flow regimes in a fluidized bed 
were derived and it was shown that such beds were unstable to small internal 
disturbances and in general stable to small surface oscillations. 

The equations derived in I are general. In  this paper we shall restrict ourselves 
to the case where heat and compressibility effects are absent and the density 
ratio R $ 1. The relevant equations are those discussed in I, 9 2. A11 papers dis- 
cussed here are for gas-fluidized beds in which there are no compressibility effects. 
This paper is the essence of an unpublished report by Murray (1963). 

Empirically it appears that in beds where the ratio of the density of the solids 
to that of the fluid is greater than about 10, bubbles or voids of particles appear 
and move up through the bed. It was suggested that the internal instability 
observed in I gives the linearized description of the way bubbles start and move 
in a fluidized bed. 

Bubbles appear in virtually all gas-fluidized beds. Their nature is most clearly 
observed by fluidizing non-porous spherical particles of equal size; diameters in 
the range 0.1-1.0mm are most convenient. Glass ballotini fluidized by air is a 
suitable system to study. For example, ballotini of 0-5 mm fluidizes at a super- 
ficial minimum velocity of approximately 35 cmlsec; this velocity varies roughly 
as the square of the particle diameter. 

It is virtually impossible in practice to fluidize this material throughout the 
bed without forming bubbles and the size and frequency of them increase 
with increasing gas flow rate. Bubbles generally form right at the bottom of the 
bed and rise at a velocity more or less the same as that found by Davies & 
Taylor (1950) for a gas bubble rising in a liquid. However, the velocity does 
depend on the shape of the particles, and air and sand (with a comparable 
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maximum diameter), for example, gives a velocity of rise for a bubble roughly 
12 yo above that found for a gas bubble in a liquid. In  general bubbles grow in 
size as they rise up through the bed. In  apparatus of a size convenient to handle 
in the laboratory, bubble diameters range between about 2 and 20 em. 

Wace & Burnett (1961) in their paper on flow patterns in two-dimensional 
gas-fluidized beds have shown that the interstitial gas flow within the bed 
is essentially streamline in character. 

Figure 1, plate 1, is a typical photograph of the motion of the particles relative 
to the bubble in a two-dimensional bed; the streamline character of the particu- 
late flow is evident. The streaks across the bubble are primarily due to boundary 
layer effects on the walls. 

The bubbles (excluding the indentation at the bottom) are essentially circular 
in section and virtually empty of particles. They thus represent moving regions 
of very high permeability which affect the otherwise uniform upward flow of the 
gas. Particles flow around the bubbles (see figure 1) as they rise and thereby 
impose extra drag forces on the nearby gas. The gas flow is thus modified both 
by these abrupt permeability changes in the bed and by the particle drag forces. 
It is, of course, primarily the gas flow and the resulting drag on the particles that 
causes the particular pattern of particle movement which results in a bubble 
passing up through the bed. 

Davidson (1961) has studied the motion of a bubble by assuming Darcy’s 
law, that the flows of the particles and of the fluid are potential flows, and that the 
bubble is spherical and a true void with fluid flowing through it and particles 
round it. Using equations based on these assumptions he obtains a solution 
which provides some useful qualitative results. While his approximate equations, 
discussed in $ 2 ,  are simple, convenient and generally adequate for most engineer- 
ing purposes, they are invalid in various situations and regions of the flow field 
of practical interest. These are discussed below. 

Recently Davidson & Harrison (1 963, ch.4) have developed Davidson’s 
(1961) original idea by implicitly including a contribution from the solids 
momentum in their discussion of the pressure distribution round a bubble. 

Jackson (1963) (who considers three-dimensional bubbles) assumes that the 
rate of change of fluid momentum is negligible and obtains a similar set of 
equations to those used below and derived in I. He then assumes, as a first 
approximation, that the particle density is constant except where it appears in 
the drag force on the particles. Hence, by a strict analogy with the equations of 
motion for a bubble of gas moving up through a liquid, discussed by Davies & 
Taylor (1950), he assumes their solution for the particulate flow. On this assump- 
tion he finds numerically a solution for the particle density and derives resulting 
expressions for the various other quantities in terms of it and the assumed flow. 
The solutions are evaluated for the upper half-plane only, where the origin of the 
co-ordinates is the centre of the sphere representing the bubble. This is a first 
approximation in an iterative scheme (further approximations would be 
lengthier). From a practical point of view such a numerical procedure is restric- 
tive if solutions are required for general bubble shapes and velocities. He deduces 
that the only solution, which satisfies the boundary conditions and equations, 
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must therefore also satisfy the equation for the bubble velocity found by Davies 
& Taylor (1950). Using the equations derived below, different solutions (found 
analytically) are possible : the assumption of the Davies-Taylor solution is 
unnecessary. It is found below that the velocity of rise is effectively the same as 
that given by the Davies-Taylor form but in certain circumstances can be higher. 
Accurate measurements of bubble velocity by Rowe, Partridge, Lyall & Ardran 
(1962) show i t  to be effectively the Davies-Taylor value. However, some experi- 
mental values are a little higher and in the case of sand it is in the region of 12 yo 
higher. Comparison between the solutions derived from the theory set out in this 
paper and available experimental evidence is made below (see also figures 3, 
6, 13 and 14). 

Recently Rowe, Partridge & Lyall (1964) have given a careful discussion of 
cloud (see $ 2 )  formation around bubbles and compare experimental results with 
the results given by Davidson’s (1961) (and Davidson & Harrison 1963) theory 
and that below. They also discuss various gas transfer phenomena not yet in- 
cluded in the mathematical theory below. 

In  this paper gas-fluidized beds in which the solids-to-fluid density ratio is 
greater than 10 will be studied. The relevant equations are thus equations (15) 
from I. With these equations the flow phenomena associated with the steady 
motion of a fully developed bubble (such as is shown in figure 1) are studied. The 
method of solution is developed in 8 2 for the two-dimensional case where com- 
parison with experiment is comparatively easy. In  $ 3 a free-streamline solution 
is used in an attempt to explain the situation which obtains in the region behind 
the bubble, $4 gives the results in the corresponding three-dimensional case 
and comparison is made with existing experimental evidence. The results from 
this mathematical approach are shown to be in quantitative agreement with the 
experimental facts. Arguments are given from the resulting flow patterns as to 
the reasons for the bubble shape. 

In  a subsequent paper, the unsteady motion of a bubble will be discussed. 

Partial list of symbols deJined in I and used in 11 

D ( 2 )  =modification to Stokes drag due to neighbouring particles 
g gravitation constant 
i unit vector in the vertical (x - ) direction 
p pressure in the gas 

vo 
vf gas velocity vector 
vs solids velocity vector 
2, 
pf density of the gas 
ps density of the solids 
us 

D = Zo/(l -Z0 )  

R = PsIPf 
gas velocity in the undisturbed fluidized state 

unit volume fraction of particles in the undisturbed fluidized state 

viscous stress tensor of the solids 
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2. Steady ' inviscid' two-dimensional bubble motion without a wake 
By 'inviscid' we shall mean the flow governed by equation (15) of I with the 

exclusion of the viscous-stress-tensor term Z div a,. The resulting equations are 
(1) below. Thus, apriori we exclude regions where there is a possible large shear 
or divergence of particles such as in the immediate neighbourhood of the bubble 
surface. As shown below, by comparison with experiment, such a restriction is 
not critical from an engineering point of view, a t  this stage. 

We shall further consider only the steady motion which exists as a result cf 
the presence in the bed of a fully developed bubble. We thus consider mainly 
gas-fluidized beds. The bubble is taken to be the centre of the co-ordinate system. 
Since the bubble moves in the direction of flow we shall adopt the usual con- 
vention by taking the x-axis in the flow direction and so the x-axis is vertical 
as shown in figure 9 (a )  with 0, the polar co-ordinate, being zero on the vertical 
x-axis. The axes here are those of part 1 rotated through in. The governing 
equations (15) of I under the above conditions become 

div(1 -Z)vf = 0, } (1) 
divZv, = 0, 

p,Z(v,.grad)v, = -gp,Zi+D(Z) (vf-vs), gradp = -D(Z)(v,-v,). 

It is convenient to introduce the non-dimensional quantities (denoted by 
primes) by 

vf = vov;, v, = vov~,  y = y'E, x = x'l, r = lr', 

P = (psZ0v3p', z = ZOZ', W )  = (p,Zovo/l) D'(Z'), } (2) 

F = vt/uZ, g = (1 - Z)/Zo, 

where 1 is some characteristic length in the bed: in what follows it will be the 
bubble radius. P is a Froude number and 8 effectively the dimensionless 
voidage. Substitution of equations (2) into (1) gives the following dimensionless 
set of equations where for convenience the primes have been dropped: 

divZv, = 0, (3) 

divgvf = 0, (4) 

(5) 

(6) 

Z(v,. grad v,) = - ZijP + D ( 2 )  (vr - v,), 
gradp = - D ( 2 )  (vf - v,). 

For a given bed F is constant. In  the undisturbed state far from the bubble, 

vf = i ,  v, = 0, 2 = 1, 

and (5) and (6) give FD(1) = 1, p =p0-x/F, ( 7 )  
where po is a constant. 

purposes where gross quantitative phenomenological features are required. 
Equations (3)-( 7) will in general be sufficiently accurate for most engineering 

Consider, in the first instance, motion far from the bubble surface, and write 

( 8 )  

v f =  ( l - - U ) i + v j ,  v , = - U i + v ~ ,  

2 = I+Z ' ,  p =pO-x/F+p' ,  

5 = l/D-Z', U = UB/v0, 
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where U, is the dimensional velocity of rise of the bubble; this has to be deter- 
mined by the analysis. In  the usual way we assume that no rapid space varia- 
tion in the dependent variables occurs in this region and that disturbances 
from the uniform state (denoted by primes) are small and tend to zero as r -+ 00. 

If we use equations (8) to linearize the convective momentum terms then, on the 
left of ( 5 ) ,  the contribution to the linear equation is - Uavijax. However, a 
better approximation to the non-linear convective term can be obtained following 
Lewis & Carrier (1949). We introduce a real constant c by writing the lineariza- 

(9) 
tion of Z(v,. grad) v, as - cUavi/ax. 

The constant c (constant with respect to the independent variables but not with 
respect to P, U ,  etc.) can be chosen in any consistent way we wish to make the 
solution more accurate. 

Equations (3)-(8) give the linearized form of the equations as 

div vi = U aZ‘/ax, 

div v; = D( 1 - U )  aZ‘/ax, 

gradp‘ = - Z’D( 1) i - (v;- vB)/F, 

(10) 

(11) 

cUav.;/ax = Z‘i/P- (v;-vi)/P--Z’D’(l)i, (12) 

(13) 

where D’( 1) = [aD(2)/aZ],,,. From (10) to (12), 

Clearly the only solution (obtained by separation of variables or otherwise) 
of this equation for 2’ which is such that 2’ -+ 0 as r -+ 03 is 2’ = 0. 

The solution 2’ = 0, which implies 2 = 1, is a valid solution of the linearized 
Oseen-like equations (lo)-( 13). Since there is a particle-density discontinuity 
at the bubble sudace, these equations probably do not give an accurate repre- 
sentation of the flows in the immediate neighbourhood of the bubble. It is sug- 
gested that the effect of this discontinuity is primarily contained within a small 
‘ boundary-layer ’ region not unlike the boundary layer in ordinary large- 
Reynolds-number flow past bodies. In  view of the importance of the stress- 
tensor terms in the equations when 2 does vary (see I) it is most likely that the 
full ‘viscous’ equations given in I are required for a study of this boundary- 
layer region. In  this sense equations (1) are the ‘ inviscid ’ equations. It is with this 
concept in mind that 2 is taken to be unity over the complete field of flow 
exterior to the bubble and we look for solutions of the ‘Oseen’ equations (15)-( 18) 
which satisfy the boundary conditions in the entire flow field. To continue the 
analogy, i t  thus represents an outer flow into which the inner boundary-layer 
(Z-varying) solution must merge. In  view of the fair experimental verification 
of the solutions it seems, at this stage, profitable and reasonable to study such 
‘inviscid’ flows, including the free-streamline case in 9 3. 

Relation (9) will now be used to replace the momentum term in (5) with no 
assumption of smallness in the linear form (see also Lewis & Carrier 1949). 
The solution 2 = 1 is a consistent solution of the resulting set of equations and 
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the solutions found below are obtained using this solution. We thus have the 
following linear approximate equations for the flow and pressure fields : 

divv, = 0, (15) 

divvf = 0, (16) 

cUav,/ax = i /F-(vf-vs)/F,  (17) 

gradp = - (vf-vs)/F, (18) 
where now 

vf + ( l - - U ) i ,  v,-+-Ui,  p + p o - x / F  as  r+co. 
Equations (15)-( 18) are not all independent since (16), say, is obtained from the 
divergence of (17) and use of (15). Equations (15)-(18) represent three inde- 
pendent equations for vf, vs, andp. Clearly the motion is irrotational. 

Note that the solution 2’ = 0 (2 = 1) and the irrotationality of vr and v, 
are consistent only with the linearized form of the equations. If we assume that 
2 is constant a priori (Davidson 1961; Davidson & Harrison 1963) then (3)-(6), 
as shown below, are an inconsistent set of equations, which implies that 2 
constant is not a solution of the non-linear equations.? Equations (5) and (6) 
with 2 constant give 

p + $vz = const., 

along a streamline. Since there is no rotation at infinity this constant must be 
the same throughout the whole field. On the other hand, from (3), (4) and (6), 
with 2 constant,p must be harmonic and so, from thelast equation, v,” is harmonic, 
which implies that v, is rotational in contradiction with the above, which, in 
view of the free-stream condition, is obtained only when the flow is irrotational 
(Beltrami fields are not of interest here). 

Davidson’s (1961) equations are (15), (16) and (IS), which do not include a 
solids-momentum contribution. Davidson & Harrison (1963), however, im- 
plicitly include a solids momentum contribution in the Bernoulli equation 
that they assume, and which is similar to the above. They use it to some advant- 
age in their study of the pressure distribution in the region around the bubble. 
However, their method is semi-empirical and within their framework the consis- 
tency problem does not arise. Their solutions do not satisfy the above equations. 
In  fact, to be consistent with the above theory a linearized Bernoulli-type 
equation must be used: this is, in effect, included in (19) below. 

The above set of linear equations (15)-(18) is consistent, and 2 = 1 (2’ = 0) 
is a valid possible mathematical solution of (lo)-( 13). In  view of the above dis- 
cussion regarding possible ‘ boundary-layer ’ effects and the favourable experi- 
mental verification of the solutions below, it seems, at this stage, to be a reason- 
able solution to investigate. 

Let w,(z), wf(z) be the complex potentials for v, and vt, where z =x: + iy = rei*. 
Integration of (17), (18) gives wf(z) ,  p ( z )  in terms of w,(z) as 

(19) } 
W f ( Z )  = 2 + ws(z) - CFU[ u + (dw,(z)/dz)], 
P ( z )  -Po = - [wf(z) -W,(z) l /p .  

t In view of the close experimental justification of the constant 2 solution, it is probably 
a reasonable approximate solution (away from the bubble surface) for the full equations. 
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The bubble shape, w,(z), and U are unknown and are part of the solution re- 
quired. A possible physical approximation is that of constant pressure inside 
the bubble. Because of the ‘free streamline’ type nature of the solution it seems 
unlikely at this stage that this last approximation is sufficient to determine the 
exact analytical solution. However, by assuming a bubble shape (as do Davies 
& Taylor 1950), which can be obtained fairly accurately from experiment, results 
can be obtained for the various flow fields which are in quantitative agreement 
with the experimental facts. The approximation of constant pressure provides 
a method (cf, Davies & Taylor 1950) of finding the velocity of rise U. The fact 
that reasonable assumptions of bubble shapes result in flow patterns and pheno- 
mena which have fairly accurate experimental verification is ti justification 
that such shapes do exist as assumed. 

Figure 1 t  is typical of the particulate flow pattern relative to the bubble. 
Bubbles are essentially circular except for the indentation on the downstream 
side. The departure from the circle begins approximately at g7r from the leading 
edge in the two-dimensional case for most U of interest at this stage. The bubble 
shape does depend on the material, but this value is typical for regular particles 
of the order of size mentioned above. X-ray pictures of three-dimensional bubbles 
(unpublished work by Rowe in 1962) have shown that the shape varies with the 
velocity U rather more, but the departure from the sphere has not been found a t  
less than 47r from the leading edge except with fine irregular material. This 
X-ray technique (Rowe et ab. 1962) has shown that the indentation is filled with 
particles which form part of a wake which moves with the bubble (see figure 1). 
‘this wake frequently exhibits vortex-like characteristics not unlike those found 
in certain viscous flows past cylinders. Rowe has found experimentally that these 
‘vortices’ detach themselves from the wake periodically. Thus, if we assume 
reasonable irrotational flows past approximate bubble shapes, equations (19) 
then give the corresponding fluid flows and pressure distributions. 

In  this paper we shall consider three cases: (i) that of a circular bubble r = 1, 
(ii) that of a two-dimensional bubble whose shape as closely resembles that of 
an actual bubble as may be wished, using conformal mapping, and (iii) that of a 
two-dimensional bubble with circular leading edge and with a cusped free- 
streamline wake (see § 3) which more closely resembles what is observed experi- 
mentally. 

Davidson (1961), Davidson & Harrison (1963) and Jackson (1963) all assume 
a circular bubble without a wake. Jackson’s (1963) numerical solution is not 
carried into the neighbourhood of the wake region, but he states that the method 
can be so designed to do so if assumptions are made about the flow in the wake of 
the bubble. His numerical results cover a range given approximately by 

-in < 6 < in-. 
t The streaks (particles) across the bubble are primarily due to the boundary-layer 

effects at  the container sides. From equation (22) the absolute velocity inside the bubble 
is $( 1 - z )  + U .  If U is not large enough any particle which leaves the immediate neigh- 
bourhood of the bubble surface will tend to fall through the bubble. As it leaves the 
surface the drag on neighbouring particles is reduced and they will tend to follow the 
first particle. This is clearly a possible way by which the fingers of particles start in a 
bubble. These fingers are common (see, for example, figure 5 (a) ,  plate 2 ) .  
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The flow field in the vicinity of the circular leading edge is not very sensitive 
to what is assumed at the trailing edge as illustrated by the examples considered 
below. 

(i) Circular bubble 
Here we take 

and (19) give 
w&) = - U(z+ l/z), 

p(2) -Po = - z /F + c U2/X2 .  

w ~ ( z )  = (1 - U )  [ X  - U / (  1 - U )  X ]  - CF 

Clearly p is not constant on IzI = 1 for any value of c. However, if we require p 
to be constant in the vicinity of the leading edge we can expand p in terms of 
8 about 8 = 0 and require the 8 2  term to be zero (cf. Davies & Taylor 1950). This 
gives U = &(cF)-B, 
or in dimensional form 

and from above 

(21) 

u, = 4(gl/c)*, 

W f ( Z )  = ( 1  - U )  [ z  - U / (  1 - U )  X I  - 1/49, 

p ( z )  -Po = - z /F+  1/4Fx2. 
(22) 

Equation (21) gives U, the dimensionless bubble velocity, as a function of c and 
F.  The former may be chosen in any way we wish. If c = 1 (the normal Oseen 
approach) (21) reduces to the same velocity of rise as for a bubble of gas rising in 
a liquid found by Davies & Taylor (1950). Lewis & Carrier (1949) suggest certain 
mathematical methods; for example, substituting the solutions obtained into the 
original correct equations and taking some simple average of the difference 
between these and the approximate equations. For example,$ we may require 

where ws(z) is given by (20). This gives c = +. An empirical method would be to 
determine experimentally accurate bubble velocity and thereby assign c. Figure 2 
shows U against 1 /F  for various c as compared with the available experimental 
data. (A plot of c for various F and U found experimentally for three-dimensional 
bubbles shows that c for a given material is effectively a function of F only.) 

From (22) the fluid flow field is clearly different for U > 1 and U < 1. Figures 3, 
4 illustrate this difference. From (22) the stream function $f is given by 

$f = (1 - U )  sin 8{r + U / (  1 - U )  r }  + sin 28/4r2. (23) 

The distinctive feature of the fluid flow when the bubble rises faster than the 
free stream interstitial velocity of the fluid (U  > 1) is shown by the $? = 0 
streamline which separates the main body of fluid flow from a region of circu- 
lating fluid. This cloud moves with the bubble and is slightly ahead of the bubble. 
This circulating cloud was first pointed out by Davidson (1961), but his solution 

t Note that in the limit U + 0 we get the simple undisturbed uniform state. 
$ If the original equations only are weighted with any factor, c = ?p 
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FIGURE 2. Bubble velocity against the Froude number (two-dimensional). 
Experiments: ballotoni-air system, R = O( lo3). 

FIGURE 3. Cloud shape and gas flow relative to the bubble for U > 1( .i. 2.4). 
(two-dimensional). 

5 Fluid Mech. 22 
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is symmetrical about the x-axis. Jackson’s (1963) numerical solution (for the 
three-dimensional bubble) also illustrates the asymmetry discussed above. 
Figures 5 (a)  and ( b ) ,  plates 2 and 3, show this cloud in the case of a gas-fluidized 
bed when a puff of nitrogen dioxide is introduced with the bubble at injection. 
The tail of nitrogen dioxide is partially a result of the difficulty in stopping the 
nitrogen dioxide at exactly the correct time. There will also be some diffusion 

FIGURE 4. Gas flow relative to the bubble for U < 1 ( +  0.6) 
(two-dimensional). 

from the cloud which will move into the region immediately below the bubble 
and cloud. It also appears that sections of the cloud are sometimes ‘cut off’ 
and these also move into the wake as in figure 5 (b) (see 9 3). 

In  the U < 1 case the effect of the particle flow on the gas is effectively to 
increase the apparent region of the void from the point of view of flow through 
i t  as is evident from the dashed line in figures 4 and 8. 

A measurable quantity experimentally, and one of practical engineering 
importance for the knowledge of gas movement and particle contact, is the 
maximum width d of the cloud. In  two-dimensional bubbles the easiest accurate 



On the mathematics of jluidization. Part 2 67 

experimental measurement of the cloud is the leading edge distance from the 
bubble centre. It is useful to know the shape of the cloud and volume of gas 
carried by it. From equation (23) when $f = 0 the maximum diameter d is 

A fair approximation to d is given by putting 0 = &r in the second of equations 
(24) to give 

dapprox. = [2r],+$, = [u / (U-  I)]&. 

given d = (2r sin e),,,., where cos 0 = 2 [ (  U - 1)  r3 - Ur]. (24) 

\ 

I 

I I I I I 1 I 

1 *o 1.5 2.0 2.5 3.0 3.5 4.0 4.5 
( b )  

FIGURE 6(a). Ratio of cloud to bubble diameter against U (> 1) (two-dimensional). 
( b )  Cloud to bubble comparison at  leading edge against U (> 1) (two-dimensional). 
Ballotini (ps  = 2.96 g/om3)-air experimental results at A.E.R.E. 

5-2 
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The ratio of the distance of the cloud leading edge to the distance of the bubble 
leading edge from the origin is r,, where from (23) 

2[(U-l)r,3-Urc]-1 = 0. (25) 

Note that U > 1 for any meaning. Figures 6 (a)  and (b) show d against U and 
rc against U respectively together with Davidson's (1961) curves and the avail- 
able experimental points given by Rowe (1962). Experimentally d is less easily 
defined and measured than r,. 

(ii) Kidney-shaped bubble 

If a circular bubble is introduced into the bed, the fluid flow tends to carry 
particles into the lower section of the bubble and the bubble quickly acquires 
the characteristic kidney shape shown in practically all pictures of bubbles in 
a fluidized bed. Initial motions when a circular bubble is introduced into a bed 
will be discussed in a further paper. 

We now consider the irrotational flow past an actual bubble shape where we 
assume there is no wake. The case when there is a wake, although more realistic, 
is more complicated and is discussed in $3. The following mapping in slightly 
different form has also been applied by Collins (1  965) to Davidson's (1961) 
theory. Collins (1965) also considers the case when there are walls present. 

The conformal mapping of the circle 151 = 1 in the c-plane by 

z = f;+b-e2/([+b) (26) 

gives a bubble shape which closely resembles that which is found in practice and 
illustrated in figure 1, if the values of b and e are 

b + 0.714, e + 0.286. (27) 

Figures 7 and 8 illustrate the improved bubble shape. Thus, the particulate 
flow now to be used in (19) is given by 

w&) = - +U [z  - 2b + (z2 + 4e2)* + 4/(2 - 2b + {zz + 4e2}*)], (28) 

with the values in (27) giving a shape representative of actual bubbles. As in 
$2(i) above we express the condition that p ( z )  from (19) with W J Z )  from (28) 
is constant in the vicinity of the leading edge on the bubble surface. This gives 

U 2  = A/cF, (29) 
0.25 [{( 1 + b)2 + e2}/( 1 + b)2]2 - 0.5 e2 [( 1 + b)2 + e2]/( 1 + b)5 

1 - 2e2/( 1 + b) [( 1 + b)2 + e2] 
where A = 

For most b and e of interest, that is, in the neighbourhood of 0.7 and 0.3 
respectively, A + 0.25, the value in case (i). Thus, the fluid flow is given by 

WI(2) = 2 + w&) - 

where WJZ) is given by (28). Figures 7, 8 illustrate the respective flow fields 
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for U > 1 and U < 1 from (28) and (30). The cloud to bubble comparison ratios 
are practically the same. 

Although such mappings may be used to obtain more realistic bubble shapes 
such refinements give only marginal improvements since of prime importance 
is the wake, which cannot be treated by any such mapping. 

3. Fully developed bubble with a cusped free-streamline wake 
At some stage between when a circular bubble is introduced into a bed and 

when it has developed its final kidney shape, a wake will form. From experi- 
mental evidence from X-ray pictures (Rowe, unpublished) such a wake is closed 
and cusped behind the bubble. 

Figure 1, in fact, also illustrates its presence. In  this section we shall find the 
solids flow past a bubble of circular shape with a cusped free streamline enclosing 
the wake and accordingly derive some of the fundamental features of the fluid 
flow resulting. On the free streamline vs is taken to be constant. Such a configura- 
tion gives a flow which suggests explanations for some of the physical phenomena 
observed in practice in the wake. 

tx t". 

FIGURE 9. Boundary value problem for the free-streamline case. 
(a) z-plane; ( b )  w,-plane. 

We now introduce the Chaplygin function 

7(w,) = 1% UdZidWS = Q(Q,, $3 + iX(4S $,L (31) 

where q5, is the scalar potential, Q = log U/v, and x is the angle v, makes with 
the positive x-axis. ~ ( w , )  is an analytic function of w, and so 

$, = 0 includes the circular section of the bubble and the cusped free streamline. 
If the point of separation q5, = 46, is specified and 9, = Qb is the free streamline 
cusp, then x is given on 21., = 0 for -a < q5, < #b < q5, and Q = SZ,, a con- 
stant, on the free streamline; that is, for < q5s < q5b. Q, and $b are given by the 
solution and cannot be assigned. Figure 9(a)  illustrates the situation in the z- 
plane. Although x is not known as a function of q5s on II., = 0 (but only as a func- 
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tion of x, y) we assume as a first approximation that x($,, 0)  and #s are related 
as if it  were simple potential flow past a circular cylinder. Thus, 

r~5,=-2UcosO on r =  1. 
Write 5 = # , W ,  '33) 
which gives 

X ( # S ,  0 f ) = xo(<) = n for - c o < < <  - 1 - 0  1 (34) 
= n-sin-15 for -1+O < t < 
= z  for 5~ '$ < Cb 

=7r for & d 5, 
where xo is defined by (34) and the lower half of the z-plane is taken as the positive 
half of the w,-plane. Further, 

(35) I a(#,, 0 ) = Qo(,$) = a,, a constant. for tCt < 5 < t b ,  

= '1 for all other c. 
The problem is to find a solution for ~(w,)  given by (31) with Q and x satisfying 
(32) and with boundary conditions (34), (35) and (36) below, namely, 

7(ws) N in for w, large. (36) 

Figure 9 (b )  illustrates the w,-plane boundary-value problem. 
The standard solution to this problem is 

It is to be understood that all integrals in this section are taken as the Cauchy 
Principal values as the need arises. Woods (1961) has considered more general 
mixed boundary-value problems (which include the above), but great care 
must be exercised in choosing the constants from physical reasoning to obtain a 
solution comparable to (37). It is shown below that ~ ( w , )  in (37) satisfies the 
boundary conditions. Equation (37), with xo from (34), gives 

which gives 

Since the wake is closed T(w,) must satisfy a closure condition which from (31) 
may be written as requiring 

~ ( w , )  - in -t- O( I/w:) for large ws. (39) 



72 J .  D. Murray 

For large w,, from above, we get 

N in+o(llw:), 

provided the following obtains: 

If we now let wJ2U --f f;+ i ( O  + ) then, since 0 > arg C(w,) 2 - n/2, we get 

limC(w,) = -i/B(<), for EU < 5 < 
WS/2U+'+i(O+) 

= l/A(5)> for 5 < or f ; >  f;b- 

From the Plemelj formulae we obtain 

Thus, from (38), (41) and (42) we get 

} (44) 
n- sin-15, for - 1 < E < 5,, 

+i( 7~ , for 5 < - 1  or &, < t. 

From (38) there is 8 singularity at 6 = &, unless fi, and E b  are such that 

From (43) or (38) a little manipulation shows that 

From equation (44) there is a singularity in Q,,(E) as 5 -+- 1 ,  since with 

[ = - 1 + € ,  /€(a, 
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From (31) this gives a half-power singularity in lvsl of the form 

v, z U1#,/2U+l/& as #s-+-2U, 
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as it must a t  the front stagnation point. 
Thus, (38) gives Q and x for any w, and U. On the free streamline $, = 0,  

and on q?, = 0 other than on the free streamline (44) gives 

for tb < 6 and -a < t < Ea, (47) 

where &, is specified and Eb and Q, are given by (40) and (45). 

function of 6. From (31) 
Equations (44) and (47) give v, at all points on the bubble and wake as a 

where w, = (wS), at some reference point z = 2,. On $s = 0, the above gives 

x+iy-x,-iy, = 2y:exp [ Q o ( t )  +iXO(t ) ld t ,  

and so the actual boundary is given for various < by 

where z, = 1 when gc = - 1, i.e. the leading edge. 
The integrals involving sin-lt are complicated analytically and can be more 

easily computed numerically. For the purpose of this paper an approximate 
integration is given in the appendix. The gross features of the fluid flow field 
will not be changed. A typical observed value for 8, is approximately 5n/6. 
This angle varies with the type of particle but only markedly so in exceptional 
circumstances as, for example, with synclystl, where it may be as small as n/3. 
With irregular silver sand, angles may vary from 5n/6 but less drastically. 
Using the fairly rough approximation set out in the appendix, values were found 
for v, and xo for x and y on the q?, = 0 streamline. U is taken as unity at infinity. 
In  any calculation the v, used is that calculated from above multiplied by U. 
The gross features of the flow field are obtained from this approximate solution. 
Figure 10 illustrates the bubble shape as compared with a circle using the 
appendix approximation. The magnitude and direction of the fluid flow is 
illustrated at certain points on the bubble and free streamline for U = 2.4. 
Note that the velocity of the fluid becomes very small on the free streamline as 

t Note that ~ ~ ( 6 )  must be monotonic in this range. 
$ A material with very small particles. 
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the cusp is approached. This dearly substantiates the contention beIow that the 
cloud is as illustrated in figures 11 and 12. 

FIGURE 10. Approximate bubble wake shape and fluid flow directions 
indicated by arrows for U = 2.4. 

FIGURE 11. Schematic cloud shape 
in the presence of a wake. 

FIGURE 12. Vortex formation 
in the wake. 
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p -Po = - F-1[ - CF u2 + x - CF U 2 ( V S ) , ] ,  
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We return now to the fluid field obtained from (19). The second of equations 
(19) gives 

where (v,)~, (vJ2 are the components of v, in the x- and y- directions. In  the 
vicinity of the leading edge v, differs negligibly from that of flow past a circular 
cylinder. Thus, from the last equation cPU2 = 0.25 as in (21). To get the complex 
potential wf over the entire field from (19) would involve lengthy and rather 
unprofitable computations. Since, in general, we are interested in the cloud shape 
in the vicinity of the wake we can obtain some information by considering $f 
close to the bubble and wake. For 101 < the cloud shape will be essentially 
that obtained in $2 above. The cloud is given by $f = 0 and the leading edge is 
given from (15) by the 2-value satisfying 

From (19) 
1 + (vS)1 - O*25U-l8(v5)1/8~ = 0. (49) 

$f = y+$s-0.25U-11m(dw,/dz) = y+$s+0.25U-1v,sinx. (50) 

Clearly, in the lower half wf-plane ?,hf > 0 outside the cloud, zero on the cloud 
and $f < 0 inside the cloud. On $, = 0, i.e. on the bubble and the free stream- 
line, < 0, y < 0 and so $-f < 0. In  fact, as seen from the table, at no point on 
the bubble or free streamline does I,/?~ = 0 except at the cusp. More accurate 
bubbles shapes will not affect this. This holds for all 77, since, on $s = 0, $, 
does not depend on U. The cloud therefore joins the wake at the cusp. From 
figure 11 the fluid velocity decreases on $s = 0 as the cusp is approached. The 
cloud is shown schematically in figure 11. In  figure 11 the arrows indicate the 
direction of the gas flow on the bubble and free streamline. 

Ideally the gas going into the wake moves up through the stationary (relative 
to the bubble) particles and the circulating gas in the cloud persists as a unit 
of gas and the motion is steady. However, since the direction of the gas flow 
in the wake tends to carry particles across the free streamline and at the same 
time induces motion in the wake as illustrated in figure 12, the wake in practice 
will grow and develop particle vortices. Clearly the motion in the wake will 
be complicated by the fact that Z may not be equal to unity. While the wake is 
small enough to be supported by the bubble, the cloud will be symmetrical and 
similar to that illustrated in figure 5 (a). The definite tail is essentially a result in 
this case of not cutting off the nitrogen dioxide at the exact time. When the wake 
becomes too large for support by the bubble it becomes unstable and detaches 
an amount of material which is naturally the vortex unit analogous to casting 
off of vortices in a real fluid flow past a cylinder. Such a process will naturally be 
antisymmetric. As we referenced above, these have been regularly observed 
(Rowe, unpublished). At the moment the particle vortex has been detached the 
cloud will move in following the new free-streamline shape. This would give the 
appearance of the cloud moving up in the wake and into the bubble, which is also 
clear in films of such bubbles in a bed. The lop-sided nature of the cloud would 
then compensate by allowing a section of the cloud to be detached on the same 
side as the particle vortex. Once this motion has started the vortices and follow- 
ing cloud sections appear first on one side and then the other. Such a motion is 
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highly unsteady. However, starting with the mathematically steady motion 
derived in this section, such an unsteady motion is a natural consequence. 
These vortices and accompanying cloud sections are very much in evidence 
experimentally (cf. figure 5 ( b ) ) .  The cloud sections are clearly marked in 
figures 5(a )  and (b).  Such patterns as observed there are fairly regular, as the 
bubbles move up through the bed. 

4. Fully developed bubble : three-dimensional case 
In  the case when there is no wake, no new point arises in the three-dimensional 

theory. Equations (15)-( 18) obtain and the motion is irrotational. If we use the 
scalar potentials q+, q5* for the fluid and solids respectively, then (excluding the 
free stream), 

where P, is the Legendre polynomial of order m and f,, s,, p ,  are constants deter- 
mined by recurrence relations from equations (17) and (18). 

In  the case of a circular bubble r = 1, we take 

$s = - U cos 8(r + 1/2r2), (51) 

and the recurrence relations give f, and pnl resulting in 

} (52) 
q+ = (1 - U )  cos 8[r - U/2( 1 - U )  r2] - cFU2 P2(cos 0p3, 
p -p,, = - r cos 0/P + cU2P2(cos 6)/r3. 

As above, if the coefficient of 0 2  in p -po  is zero, we get 

CFU2 = 4. (53) 

If we use the same criterion as discussed in $ 2 to obtain c we find c = 2. Figure 13 
illustrates the velocity curve with this value of c and the experimental results 
from recent X-ray pictures of bubbles by the techniques set out by Rowe et al. 
(1962). With this more exact technique of measurement, c may be evaluated 
empirically with fair accuracy and as mentioned above c is a function of P 
which increases with If’ only slightly. When F is between 1 and 2, c is equal to 
0.6 0.02. 

From (52) the flow patterns are seen to be similar to those discussed in $2, 
there being a cloud when U > 1. Figure 14 gives the ratio of this cloud to bubble 
diameter as U varies. As in the two-dimensional case the diameter of the cloud 
is taken to be the width at 8 = Qrr. With r, defined in a similar way as in $ 2  
a figure comparable to figure 6 (b)  would be obtained in this case. 

A wake exists in this case and by analogy will form a ring vortex. This vortex 
will be cast off in a similar manner to that in the two-dimensional case, but 
without the asymmetry. In  a study of particle movement by Rowe & Partridge 
(1962) the vortex is exhibited by passing a single bubble up through a bed in 
which the lower half was initially filled with coloured particles. The ring vortex 
is very distinct. 
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c = 2 .  / , 

p ( = $ )  I 

FIGURE 13. Bubble velocity against the Froude number (three-dimensional). 
Experiments: ballotini-air systems, R = O( lo3). 
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FIGURE 14. Ratio of cloud to bubble diameter againse U ('> 1) 
(three-dimensional). 
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5. Conclusions 
Using the equations of conservation of mass and momentum derived in $2 

of part 1 (1965) in the case where the density ratio of solids to fluids is very 
large an inviscid continuum approximate set of equations are shown to be 
adequate for the gross description of bubble motion. Using these 'inviscid' 
(i.e. we omit the solids stress tensor) equations and a modified Oseen technique, 
solutions are found which exhibit many of the observable features which occur 
when fully developed bubbles rise up through a fluidized bed. The results are 
in qualitative agreement with experiment. 

The study of the particle flow past a cylinder including a closed free-stream- 
Iine wake results in flow patterns which suggest reasons for the appearance of 
particle vortex-like patterns behind the bubble and the actual observed cloud 
shape when this happens. 

It is still an open question as to why the bubbles should be the shapes they 
are, but justification a t  this stage for taking them as such is given by the close 
comparison between the resulting derived flow patterns and the experimental 
evidence. 

For practical engineering purposes equations (15) (or (16)), (17) and (18) 
suffice, and should adequately describe phenomena such as gross bubble motion 
and consequently the resulting gross particle motion. 

I wish to thank Dr P. N. Rowe of the Chemical Engineering Division, A.E.R.E., 
Harwell, for the benefit of many most useful discussions, his wide experience of 
fluidization and for supplying the photographs and most of the experimental 
results referred to in this paper. I wish also to thank Mr B. A. Partridge of the 
same Division at Harwell for his assistance in organizing and carrying out the 
numerical calculations and for many helpful discussions. 
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Appendix: approximate evaluation of the integrals appearing in 0 3 
We approximate sin-1 t ,  over the range of integration, by writing 

r1 sin-l t = A + B(Eu - t)' + C(Eu - t)' ( c b -  t)*,  (Al l  
and we require A and B, and C to be chosen so that equation ( A l )  is satisfied 
at t = t,, t = 0,  and t = - 1.  Thus 

A = n-l sin-l tu, 
= [ ( ' & & ~ ) ' - ~ ~ { ( ' & z +  ')'('&I+ ' ) * - ( ~ u ~ b ) ' l 1 r 2 ~ ~ ( ~ u +  ')'{('&+')'-&l]-'~ (A2) I c = [2&(tU+ 1)~- tk } - t i1 [2&(Eu+ l P { ( t b +  WttH-1. 

The integrals in (40) and (45) are obtained from those in (46) and (47) by obtaining 
the asymptotic forms for large and so will be obtained in the same way below. 
For convenience introduce 
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where D, E will have the range of 6 which keeps them real. When (A 1) is used 
in (46), (47) the following integrals arise: 

Equation (45) gives, (using the above, or using (47) with the above integrals 
and requiring no singularity at c = fb), 

a, = A 1 0 g ( ( F + 1 ) / ( F - 1 ) } + 2 B [ ( f b + 1 ) + - ( ~ b - f u ) ' ] + + ( c u + 1 ) ,  (A7) 

after a little manipulation. Substitution of (A4), (AS), (A6) in (47) and letting 
c-+ - l + s , w h e r e s <  1,weget 

!&( - 1 5 6 )  M (log€) [ A  +B(fu+ l)*+c(cu+ I)* (&+ I)'] = - &log€, 

which gives the correct half-power singularity in us. 

second relation between fi, and &, namely, 
Equation (40) or the appropriate asymptotic form of (A4) to (A6) gives the 

= A l)/(F- l)} f 2A(6u f I)' (& + l)' ( f b -  &)-' 

+ $B[(cb -k '1% - ( f b  - &)'I (& - fu)-' 

+c[(cb+ 1 ) z - ( ~ b - f u ) 2 1  (fb-&z-'* (A 8 )  

Equations (A?) and (A8) determine !& and &, for any fu. Substitution of 
(A4)-(A8) together with A-F from (A 1)-(A3) into (46) and (47) givesXo([), SZ&) 
as functions of E. With these functions the shape of the approximate bubble 
is given by (48). 

The approximation is fairly rough as given in (A 1) but it may be easily im- 
proved systematically. However, if accuracy is required in the bubble shape the 
integrals should be computed exactly. 

The case considered is that in which OU = gn, which gives f u  = 0.8667. Equa- 
tions (A2), (A7) and (A8) give 

(A 9) 
0, = 0.3048, tb = 1.6900, 

A = 0.3333, B = 0.6059, C = -0.7410. 



80 J .  D. Murray 

6, v, and xo were calculated for various points and the streamline llr, = 0 
is illustrated in figure 9. The magnitude and direction of the fluid flow for 
U = 2-4 is shown at various points on the bubble and wake using (19). 
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